Organization of G proteins and adenylyl cyclase at the plasma membrane.

نویسندگان

  • C Huang
  • J R Hepler
  • L T Chen
  • A G Gilman
  • R G Anderson
  • S M Mumby
چکیده

There is mounting evidence for the organization and compartmentation of signaling molecules at the plasma membrane. We find that hormone-sensitive adenylyl cyclase activity is enriched in a subset of regulatory G protein-containing fractions of the plasma membrane. These subfractions resemble, in low buoyant density, structures of the plasma membrane termed caveolae. Immunofluorescence experiments revealed a punctate pattern of G protein alpha and beta subunits, consistent with concentration of these proteins at distinct sites on the plasma membrane. Partial coincidence of localization of G protein alpha subunits with caveolin (a marker for caveolae) was observed by double immunofluorescence. Results of immunogold electron microscopy suggest that some G protein is associated with invaginated caveolae, but most of the protein resides in irregular structures of the plasma membrane that could not be identified morphologically. Because regulated adenylyl cyclase activity is present in low-density subfractions of plasma membrane from a cell type (S49 lymphoma) that does not express caveolin, this protein is not required for organization of the adenylyl cyclase system. The data suggest that hormone-sensitive adenylyl cyclase systems are localized in a specialized subdomain of the plasma membrane that may optimize the efficiency and fidelity of signal transduction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

اندازه‌گیری فعالیت آدنیلیل سیکلاز غشاء سلولی در حضور پروتئین کموتاکسیک ماکروفاژ

 Adenylyl cyclase is a membrane-bound enzyme that catalyzes the conversion of ATP to cAMP. The inhibition of adenylyl cyclase was carried out by measuring the ability of the macrophage chemotactic protein-1 to inhibit the forskolin-induced enzyme activity. Measurement of adenylyl cyclase activity was performed according to the procedure described by Wiegn.  Adenylyl cyclase activity in the pres...

متن کامل

Coxsackievirus B3 entry into the host cell interferes with G-protein-mediated transmembrane signalling.

In the present work we used various cell lines in order to study the possible effect of coxsackievirus B3 (CVB3) entry on the adenylyl cyclase transmembrane signalling system. A significant decrease (by about 10-20%) was found in forskolin-augmented as well as in A1F-4- and GTP gamma S-sensitive adenylyl cyclase activity in plasma membranes isolated from HeLa, HEp-2, Vero and green monkey kidne...

متن کامل

Compartmentation of cyclic adenosine 3',5'-monophosphate signaling in caveolae.

The cAMP-signaling pathway is composed of multiple components ranging from receptors, G proteins, and adenylyl cyclase to protein kinase A. A common view of the molecular interaction between them is that these molecules are disseminated on the plasma lipid membrane and random collide with each other to transmit signals. A limitation to this idea, however, is that a signaling cascade involving m...

متن کامل

Isoform-specific regulation of adenylyl cyclase function by disruption of membrane trafficking.

Oligomerization plays an important role in endoplasmic reticulum processing and membrane insertion (and ultimately in regulation of function) of a number of transmembrane spanning proteins. Furthermore, it is known that adenylyl cyclases (ACs), critical regulators of cellular functions, associate into higher order (dimeric) forms. However, the importance of these higher order aggregates in regu...

متن کامل

Gi/o-coupled receptors compete for signaling to adenylyl cyclase in SH-SY5Y cells and reduce opioid-mediated cAMP overshoot.

Organization of G protein-coupled receptors and cognate signaling partners at the plasma membrane has been proposed to occur via multiple mechanisms, including membrane microdomains, receptor oligomerization, and protein scaffolding. Here, we investigate the organization of six types of Gi/o-coupled receptors endogenously expressed in SH-SY5Y cells. The most abundant receptor in these cells was...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 8 12  شماره 

صفحات  -

تاریخ انتشار 1997